UV-B photoreceptor-mediated protection of the photosynthetic machinery in Chlamydomonas reinhardtii.

نویسندگان

  • Guillaume Allorent
  • Linnka Lefebvre-Legendre
  • Richard Chappuis
  • Marcel Kuntz
  • Thuy B Truong
  • Krishna K Niyogi
  • Roman Ulm
  • Michel Goldschmidt-Clermont
چکیده

Life on earth is dependent on the photosynthetic conversion of light energy into chemical energy. However, absorption of excess sunlight can damage the photosynthetic machinery and limit photosynthetic activity, thereby affecting growth and productivity. Photosynthetic light harvesting can be down-regulated by nonphotochemical quenching (NPQ). A major component of NPQ is qE (energy-dependent nonphotochemical quenching), which allows dissipation of light energy as heat. Photodamage peaks in the UV-B part of the spectrum, but whether and how UV-B induces qE are unknown. Plants are responsive to UV-B via the UVR8 photoreceptor. Here, we report in the green alga Chlamydomonas reinhardtii that UVR8 induces accumulation of specific members of the light-harvesting complex (LHC) superfamily that contribute to qE, in particular LHC Stress-Related 1 (LHCSR1) and Photosystem II Subunit S (PSBS). The capacity for qE is strongly induced by UV-B, although the patterns of qE-related proteins accumulating in response to UV-B or to high light are clearly different. The competence for qE induced by acclimation to UV-B markedly contributes to photoprotection upon subsequent exposure to high light. Our study reveals an anterograde link between photoreceptor-mediated signaling in the nucleocytosolic compartment and the photoprotective regulation of photosynthetic activity in the chloroplast.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

UV-B Perception and Acclimation in Chlamydomonas reinhardtii.

Plants perceive UV-B, an intrinsic component of sunlight, via a signaling pathway that is mediated by the photoreceptor UV RESISTANCE LOCUS8 (UVR8) and induces UV-B acclimation. To test whether similar UV-B perception mechanisms exist in the evolutionarily distant green alga Chlamydomonas reinhardtii, we identified Chlamydomonas orthologs of UVR8 and the key signaling factor CONSTITUTIVELY PHOT...

متن کامل

Investigation of an Optimized Context for the Expression of GFP as a Reporter Gene in Chlamydomonas Reinhardtii

Background: Chlamydomonas reinhardtii is a novel recombinant eukaryotic expression system with many advantages including fast growth rate, rapid scalability, absence of human pathogens and the ability to fold and assemble complex proteins accurately, however, obstacle relatively low expression level necessitates optimizing foreign gene expression in this system. The Green Fluorescent Protein (G...

متن کامل

Assembly,function, and dynamics of the photosynthetic machinery in Chlamydomonas reinhardtii.

The green unicellular alga Chlamydomonas reinhardtii occupies a unique position among photosynthetic organisms. Although its photosynthetic function is very similar to that of vascular plants, it combines the advantages of unicellular organisms, which include fast growth under controlled environmental conditions with highly sophisticated genetics of the nuclear, chloroplast, and mitochondrial c...

متن کامل

Scientific Correspondence Assembly, Function, and Dynamics of the Photosynthetic Machinery in Chlamydomonas reinhardtii

The green unicellular alga Chlamydomonas reinhardtii occupies a unique position among photosynthetic organisms. Although its photosynthetic function is very similar to that of vascular plants, it combines the advantages of unicellular organisms, which include fast growth under controlled environmental conditions with highly sophisticated genetics of the nuclear, chloroplast, and mitochondrial c...

متن کامل

Acclimation of the photosynthetic machinery to high temperature in Chlamydomonas reinhardtii requires synthesis de novo of proteins encoded by the nuclear and chloroplast genomes.

The mechanism responsible for the enhancement of the thermal stability of the oxygen-evolving machinery of photosystem II during acclimation of Chlamydomonas reinhardtii to high temperatures such as 35 degrees C remains unknown. When cells that had been grown at 20 degrees C were transferred to 35 degrees C, the thermal stability of the oxygen-evolving machinery increased and within 8 h it was ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 113 51  شماره 

صفحات  -

تاریخ انتشار 2016